Modeling gene expression using five histone modifications Fifth Annual Primes MIT Conference

Lalita Devadas

Mentor: Angela Yen

May 17, 2015

Lalita Devadas - Modeling gene expression using five histone modifications

1 Biological Background

2 Method

3 Results

4 Moving Forward

1 Biological Background

2 Method

3 Results

Gene Expression Central dogma of molecular biology

Gene Expression Relevance

- Important to understanding biological activity
- Crucial to advances in medicine
- Detection, prevention, and treatment of disease

Gene Expression Regulation

- Genetic
 - Sequences of nucleotides (ACTG)

Gene Expression Regulation

Epigenetic

Changes to environment surrounding DNA

Epigenetics Histone modifications

Chemical changes to histone protein core or protruding tail

Epigenomes Roadmap Project

1 Biological Background

2 Method

3 Results

Lalita Devadas --- Modeling gene expression using five histone modifications

Data Pipeline Objective

Data Pipeline Overview

Data Pipeline Best-bin approach

Best-bin approach Dividing genes

Lalita Devadas - Modeling gene expression using five histone modifications

Best-bin approach Choosing best bin

epigenome X, histone mark Y

Lalita Devadas - Modeling gene expression using five histone modifications

Data Pipeline Classification

Types of Models Random Forest

Random Forest model

Returns majority vote of classification determined by a group of decision trees

Types of Models Random Forest

Random Forest model

Returns majority vote of classification determined by a group of decision trees

Data Pipeline Regression

Types of Models

Linear model

Finds a linear correlation between predictors and response

Data Pipeline Overview

1 Biological Background

2 Method

Epigenomes Roadmap Project

Data Pipeline Objective

Results of Pipeline Conclusions

- Models created for cultured epigenomes have a much higher predictive power than those created for tissue samples
- H3K36me3 is the most important histone mark used for prediction

Results of Pipeline Graph

Specifics of Best Model Classification Accuracy

Specifics of Best Model **Regression Accuracy**

Actual v. Predicted Gene Expression for HeLa Cell Line

every data point represents one gene r² value: 0.640

1 Biological Background

2 Method

3 Results

Lalita Devadas - Modeling gene expression using five histone modifications

Next Steps

- Improve predictive power
- Broaden scope of predictors and response
- Further analysis of current results
- Apply procedure to different data
- Release code as a tool for other researchers

Acknowledgements

I would like to thank:

- My mentor, Angela Yen
- Prof. Manolis Kellis
- Roadmap Project
- PRIMES program
- My family